Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Anna I. Tursina,^a* Sergei N. Nesterenko,^a Elena V. Murashova,^a Ilya V. Chernyshev,^a Henri Noël^b and Yuri D. Seropegin^a

^aDepartment of Chemistry, Moscow State University, Leninskie Gory, 119 992 GSP-2 Moscow, Russia, and ^bLaboratoire de Chimie du Solide et Inorganigue Moléculaire, UMR–CNRS 6511, Université de Rennes1, Avenue du Général Leclerc, F-35042 Rennes, France

Correspondence e-mail: tursina@newmail.ru

Key indicators

Single-crystal X-ray study T = 293 KMean σ (Al–Al) = 0.007 Å R factor = 0.029 wR factor = 0.127 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ce₂Ru₃Al₁₅, an intermetallic compound of a new structure type

The title compound, dicerium triruthenium pentadecaaluminium, is a new intermetallic compound from the Al-rich region of the Ce–Ru–Al phase diagram. Two Ce atoms (6g and 2a sites of space group $P6_3/mcm$) are coordinated by 18 atoms, one Ru atom (12*i* site) and five Al atoms (12*k*, 12*i*, 12*j*, 12*j* and 12*k* sites) have 12 nearest neighbours each. Received 29 October 2004 Accepted 18 November 2004 Online 27 November 2004

Comment

During the systematic study of the ternary Ce–Ru–Al system, the existence of a new intermetallic compound Ce₂Ru₃Al₁₅ was established. Previously, the structure of only one ternary compound from this system has been determined, *viz*. Ce₃Ru₄Al₁₂ (Bukhan'ko *et al.*, 2004).

In the $Ce_2Ru_3Al_{15}$ structure, both crystallographically different Ce atoms are located in significantly distorted polyhedra formed by 18 atoms: $Ce1[Ru_4Al_{14}]$ and $Ce2[Al_{18}]$. Around atom Ru3, ten Al atoms form a pentagonal antiprism

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Projection of the unit-cell contents on to the x0z plane, with Ce atoms shown as green circles, Ru atoms as blue circles and Si atoms as purple circles.

Figure 2

The asymmetric unit of the title compound, with atom labelling and displacement ellipsoids drawn at the 90% probability level.

capped by two Ce atoms on both basal faces. Five crystallographically independent Al atoms are surrounded by distorted pentagonal antiprisms with two additional atoms: Al4[$Ce_3Ru_2Al_7$], Al5[Ce₂Ru₂Al₈], Al6[Ce₂Ru₂Al₈], Al7[Ce1Ru2Al9] and Al8[Ce2Ru2Al8]. The Ru and Al atoms form a complex three-dimensional [Ru₃Al₁₅] network in which the Ce atoms are located (Fig. 1). Fig. 2 shows the asymmetric unit of the title compound.

Experimental

Ce2Ru3Al15 was prepared by arc melting of the elements (Ce 99.8, Ru 99.9, Al 99.99 wt% pure) under a high purity argon atmosphere on a water-cooled hearth. The arc-melted button with Ce12Ru8Al80 composition was turned over and remelted to ensure its homogeneity. The weight loss was less than 1%. A single crystal was selected from the surface of the alloy obtained.

Crystal data

$Ce_2Ru_3Al_{15}$	Mo $K\alpha$ radiation
$M_r = 988.15$	Cell parameters from 24
Hexagonal, P6 ₃ /mcm	reflections
a = 13.122(3) Å	$\theta = 15.2 - 15.7^{\circ}$
c = 9.0964 (18) Å	$\mu = 10.78 \text{ mm}^{-1}$
$V = 1356.4 (5) \text{ Å}^3$	T = 293 (2) K
Z = 4	Prism, metallic light grey
$D_x = 4.839 \text{ Mg m}^{-3}$	$0.12 \times 0.03 \times 0.02 \text{ mm}$
Data collection	
Enraf-Nonius CAD-4	$R_{\rm int} = 0.098$
diffractometer	$\theta_{\rm max} = 28.0^{\circ}$
ω scans	$h = 0 \rightarrow 17$
Absorption correction: multi-scan	$k = -17 \rightarrow 0$
(SORTAV; Blessing, 1995)	$l = 0 \rightarrow 12$
$T_{\min} = 0.750, T_{\max} = 0.806$	1 standard reflection
2233 measured reflections	frequency: 120 min

intensity decay: 0.2%

624 independent reflections 340 reflections with $I > 2\sigma(I)$ Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.029$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.127$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.74	$\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3}$
624 reflections	$\Delta \rho_{\rm min} = -1.57 \text{ e } \text{\AA}^{-3}$
41 parameters	

Table 1		
Selected	bond lengths (Å).	

Ce1-Al6	3.145 (5)	Al4-Al8	2.639 (7)
Ce1-Al7	3.149 (5)	Al4-Al4 ^{iv}	2.703 (5)
Ce1-Al8 ⁱ	3.210 (5)	Al4-Al6	2.777 (5)
Ce1-Al8 ⁱⁱ	3.213 (5)	Al4-Al6 ^{vi}	2.881 (5)
Ce1-Al4 ⁱ	3.238 (5)	Al5-Al7 ⁱⁱⁱ	2.724 (3)
Ce1-Al5 ⁱⁱ	3.371 (3)	Al5-Al8 ⁱⁱ	2.742 (5)
Ce2-Al6 ⁱⁱⁱ	3.273 (5)	Al5-Al7 ⁱⁱ	2.931 (4)
Ce2-Al4 ⁱⁱⁱ	3.346 (5)	Al5-Al5 ^{vii}	2.975 (9)
Ru3-Al5 ^{iv}	2.566 (4)	Al6-Al7 ^{viii}	2.696 (7)
Ru3-Al7 ^v	2.640 (2)	Al6-Al6 ^{ix}	2.730 (10)
Ru3-Al6	2.671 (3)	Al6-Al8 ^x	2.803 (6)
Ru3-Al4	2.688 (3)	Al7-Al7 ^{xi}	2.832 (8)
Ru3-Al8	2.693 (2)	Al8-Al8 ^{xii}	2.685 (9)
Ru3-Ce1 ^{iv}	3.4497 (7)		

Symmetry codes: (i) $x, y, \frac{1}{2} - z$; (ii) -x, 1 - y, -z; (iii) $1 + x - y, 1 - y, \frac{1}{2} - z$; (iv) $\begin{array}{c} 1 - y, 1 - x, -z; \ (v) \ 1 + x - y, 1 + x, z - \frac{1}{2}; \ (vi) \ y - 1, -x + y, -z; \ (vii) \ -x + y, y, -z; \\ (viii) \ -x, -x + y, z; \ (ix) \ 1 + x - y, 2 - y, \frac{1}{2} - z; \ (x) \ 1 - y, 1 - x, \frac{1}{2} + z; \ (xi) \end{array}$ -y, 1 + x - y, z; (xii) $x, y, -\frac{1}{2} - z$.

The highest peak and the deepest hole in the final difference map are located 1.24 Å from Al4 and 1.94 Å from Al6, respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

This work was supported by the RFBR project No. 03-03-20001BNTS a.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. (1998). DIAMOND. Version 2.1b. Crystal Impact GbR, Bonn, Germany.
- Bukhan'ko, N. G., Tursina, A. I., Malyshev, S. V., Gribanov, A. V., Seropegin, Yu. D. & Bodak, O. I. (2004). J. Alloys Compd, 367, 149-151.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.