Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Anna I. Tursina, ${ }^{\text {a }}$

Sergei N. Nesterenko, ${ }^{\text {a }}$
Elena V. Murashova, ${ }^{\text {a }}$ Ilya V. Chernyshev, ${ }^{\text {a }}$ Henri Noël ${ }^{\text {b }}$ and Yuri D. Seropegin ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Moscow State University, Leninskie Gory, 119992 GSP-2 Moscow, Russia, and ${ }^{\text {b }}$ Laboratoire de Chimie du Solide et Inorganigue Moléculaire, UMR-CNRS 6511, Université de Rennes1, Avenue du Général Leclerc, F-35042 Rennes, France

Correspondence e-mail: tursina@newmail.ru

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Al}-\mathrm{Al})=0.007 \AA$
R factor $=0.029$
$w R$ factor $=0.127$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{Ce}_{2} \mathrm{Ru}_{3} \mathrm{Al}_{15}$, an intermetallic compound of a new structure type

The title compound, dicerium triruthenium pentadecaaluminium, is a new intermetallic compound from the Al-rich region of the $\mathrm{Ce}-\mathrm{Ru}-\mathrm{Al}$ phase diagram. Two Ce atoms ($6 g$ and $2 a$ sites of space group $\mathrm{P}_{3} / \mathrm{mcm}$) are coordinated by 18 atoms, one Ru atom ($12 i$ site) and five Al atoms ($12 k, 12 i, 12 j, 12 j$ and $12 k$ sites) have 12 nearest neighbours each.

Comment

During the systematic study of the ternary $\mathrm{Ce}-\mathrm{Ru}-\mathrm{Al}$ system, the existence of a new intermetallic compound $\mathrm{Ce}_{2} \mathrm{Ru}_{3} \mathrm{Al}_{15}$ was established. Previously, the structure of only one ternary compound from this system has been determined, viz. $\mathrm{Ce}_{3} \mathrm{Ru}_{4} \mathrm{Al}_{12}$ (Bukhan'ko et al., 2004).

In the $\mathrm{Ce}_{2} \mathrm{Ru}_{3} \mathrm{Al}_{15}$ structure, both crystallographically different Ce atoms are located in significantly distorted polyhedra formed by 18 atoms: $\mathrm{Ce} 1\left[\mathrm{Ru}_{4} \mathrm{Al}_{14}\right]$ and $\mathrm{Ce} 2\left[\mathrm{Al}_{18}\right]$. Around atom Ru 3 , ten Al atoms form a pentagonal antiprism

Projection of the unit-cell contents on to the $x 0 z$ plane, with Ce atoms shown as green circles, Ru atoms as blue circles and Si atoms as purple circles.

Received 29 October 2004 Accepted 18 November 2004 Online 27 November 2004

Figure 2
The asymmetric unit of the title compound, with atom labelling and displacement ellipsoids drawn at the 90% probability level.
capped by two Ce atoms on both basal faces. Five crystallographically independent Al atoms are surrounded by distorted pentagonal antiprisms with two additional atoms: $\mathrm{Al} 4\left[\mathrm{Ce}_{3} \mathrm{Ru}_{2} \mathrm{Al}_{7}\right], \quad \mathrm{Al} 5\left[\mathrm{Ce}_{2} \mathrm{Ru}_{2} \mathrm{Al}_{8}\right], \quad \mathrm{Al} 6\left[\mathrm{Ce}_{2} \mathrm{Ru}_{2} \mathrm{Al}_{8}\right]$, $\mathrm{Al} 7\left[\mathrm{Ce}_{1} \mathrm{Ru}_{2} \mathrm{Al}_{9}\right]$ and $\mathrm{Al} 8\left[\mathrm{Ce}_{2} \mathrm{Ru}_{2} \mathrm{Al}_{8}\right]$. The Ru and Al atoms form a complex three-dimensional $\left[\mathrm{Ru}_{3} \mathrm{Al}_{15}\right]$ network in which the Ce atoms are located (Fig. 1). Fig. 2 shows the asymmetric unit of the title compound.

Experimental

$\mathrm{Ce}_{2} \mathrm{Ru}_{3} \mathrm{Al}_{15}$ was prepared by arc melting of the elements (Ce 99.8, Ru 99.9, Al $99.99 \mathrm{wt} \%$ pure) under a high purity argon atmosphere on a water-cooled hearth. The arc-melted button with $\mathrm{Ce}_{12} \mathrm{Ru}_{8} \mathrm{Al}_{80}$ composition was turned over and remelted to ensure its homogeneity. The weight loss was less than 1%. A single crystal was selected from the surface of the alloy obtained.

Crystal data

$\mathrm{Ce}_{2} \mathrm{Ru}_{3} \mathrm{Al}_{15}$
$M_{r}=988.15$
Hexagonal, $P 6_{\mathfrak{Z}} / \mathrm{mcm}$
$a=13.122(3) \AA$
$c=9.0964(18) \AA$
$V=1356.4(5) \AA^{3}$
$Z=4$
$D_{x}=4.839 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.098$
\quad diffractometer	$\theta_{\max }=28.0^{\circ}$
ω scans	$h=0 \rightarrow 17$
Absorption correction: multi-scan	$k=-17 \rightarrow 0$
$\quad(S O R T A V ;$ Blessing, 1995)	$l=0 \rightarrow 12$
$T_{\min }=0.750, T_{\max }=0.806$	1 standard reflection
2233 measured reflections	frequency: 120 min
624 independent reflections	intensity decay: 0.2%

Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.127$
$S=0.74$
624 reflections
41 parameters

Table 1
Selected bond lengths (\AA).

Ce1-Al6	3.145 (5)	Al4-Al8	2.639 (7)
Ce1-Al7	3.149 (5)	Al4-Al4 ${ }^{\text {iv }}$	2.703 (5)
$\mathrm{Ce} 1-\mathrm{Al} 8^{\text {i }}$	3.210 (5)	Al4-Al6	2.777 (5)
$\mathrm{Ce} 1-\mathrm{Al8}{ }^{\text {ii }}$	3.213 (5)	Al4-Al6 ${ }^{\text {vi }}$	2.881 (5)
Ce1-Al4 ${ }^{\text {i }}$	3.238 (5)	Al5-Al7 ${ }^{\text {iii }}$	2.724 (3)
$\mathrm{Ce} 1-\mathrm{Al5}{ }^{\text {ii }}$	3.371 (3)	$\mathrm{Al5}-\mathrm{Al8}{ }^{\text {ii }}$	2.742 (5)
Ce2-Al6 ${ }^{\text {iii }}$	3.273 (5)	$\mathrm{Al5}-\mathrm{Al} 7^{\text {ii }}$	2.931 (4)
$\mathrm{Ce} 2-\mathrm{Al4}{ }^{\text {iii }}$	3.346 (5)	Al5-Al5 ${ }^{\text {vii }}$	2.975 (9)
Ru3-A15 ${ }^{\text {iv }}$	2.566 (4)	Al6-Al7 ${ }^{\text {viii }}$	2.696 (7)
Ru3-A17 ${ }^{\text {v }}$	2.640 (2)	Al6-Al6 ${ }^{\text {ix }}$	2.730 (10)
Ru3-Al6	2.671 (3)	Al6-Al8 ${ }^{\text {x }}$	2.803 (6)
Ru3-Al4	2.688 (3)	Al7-Al7 ${ }^{\text {xi }}$	2.832 (8)
Ru3-Al8	2.693 (2)	Al8-Al8 ${ }^{\text {xii }}$	2.685 (9)
Ru3-Ce1 ${ }^{\text {iv }}$	3.4497 (7)		

Symmetry codes: (i) $x, y, \frac{1}{2}-z$; (ii) $-x, 1-y,-z$; (iii) $1+x-y, 1-y, \frac{1}{2}-z$; (iv) $1-y, 1-x,-z$; (v) $1+x-y, 1+x, z-\frac{1}{2}$; (vi) $y-1,-x+y,-z$; (vii) $-x+y, y,-z$; (viii) $\quad-x,-x+y, z ; \quad$ (ix) $\quad 1+x-y, 2-y, \frac{1}{2}-z ; \quad$ (x) $\quad 1-y, 1-x, \frac{1}{2}+z ; \quad$ (xi) $-y, 1+x-y, z$; (xii) $x, y,-\frac{1}{2}-z$.

The highest peak and the deepest hole in the final difference map are located $1.24 \AA$ from Al4 and $1.94 \AA$ from Al6, respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

This work was supported by the RFBR project No. 03-0320001BNTS_a.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brandenburg, K. (1998). DIAMOND. Version 2.1b. Crystal Impact GbR, Bonn, Germany.
Bukhan'ko, N. G., Tursina, A. I., Malyshev, S. V., Gribanov, A. V., Seropegin, Yu. D. \& Bodak, O. I. (2004). J. Alloys Compd, 367, 149-151.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

